Школьная энциклопедия. Фазовые переходы Испарение и кипение насыщенный пар

Все газы явл. парами какого-либо вещества, поэтому принципиальной разницы между понятиями газ и пар нет. Водяной пар явл. реальным газом и широко используется в различных отраслях промышленности. Это объясняется повсеместным распространением воды, ее дешевизной и безвредностью для здоровья человека. Водяной пар получается в процессе испарения воды при подводе к ней теплоты.

Парообразованием наз. процесс перехода жидкости в пар.

Испарением наз. парообразование, происходящее только с поверхности жидкости и при любой температуре. Интенсивность испарения зависит от природы жидкости и температуры.

Кипением наз. парообразование во всей массе жидкости.

Процесс превращения пара в жидкость, осуществляющийся при отнятии от него теплоты и являющийся процессом, обратным парообразованию, наз. конденсацией . Этот процесс, также как и парообразование, происходит при постоянной температуре.

Возгонкой или сублимацией наз. процесс перехода вещества из твердого состояния непосредственно в пар.

Процесс, обратный процессу сублимации, т.е. процесс перехода пара непосредственно в твердое состояние, наз. десублимацией .

Насыщенный пар. При испарении жидкости в ограниченный объем одновременно происходит и обратный процесс, т.е. явление сжижения. По мере испарения и заполнения паром пространства над жидкостью, уменьшается интенсивность испарения и увеличивается интенсивность обратного ему процесса. В некоторый момент, когда скорость конденсации станет равной скорости испарения, в системе наступает динамическое равновесие. При этом состоянии число молекул, вылетающих из жидкости, будет равно числу молекул, возвращающихся в нее обратно. Следовательно, в паровом пространстве при этом равновесном состоянии будет находиться максимальное число молекул. Пар при этом состоянии имеет максимальную плотность и наз. насыщенным . Под насыщенным понимают пар, находящийся в равновесном состоянии с жидкостью, из которой он образуется. Насыщенный пар имеет температуру, являющуюся функцией его давления, равного давлению среды, в которой происходит процесс кипения. При увеличении объема насыщенного пара при постоянной температуре происходит переход некоторого количества жидкости в пар, при уменьшении же объема при постоянной температуре – переход пара в жидкость, но как в первом, так и во втором случаях давление пара остается постоянным.

Сухой насыщенный пар получается при испарении всей жидкости. Объем и температура сухого пара являются функциями давления. Вследствие этого состояние сухого пара определяется одним параметром, например, давлением или температурой.

Влажный насыщенный пар , получающийся при неполном испарении жидкости, явл. смесью пара с мельчайшими капельками жидкости, распространенными равномерно по всей его массе и находящимися в нем во взвешенном состоянии.

Массовая доля сухого пара во влажном паре наз. степенью сухости или массовым паросодержанием и обозначается через x. Массовая доля жидкости во влажном паре наз. степенью влажности и обозначается y. Очевидно, что y=1-x. Степень сухости и степень влажности выражают или в долях единицы или в процентах.

Для сухого пара х=1, а для воды х=0. В процессе парообразования степень сухости пара постепенно увеличивается от нуля до единицы.

При сообщении сухому пару теплоты при постоянном давлении, температура его будет увеличиваться. Пар, получаемый в этом процессе, наз. перегретым .

Поскольку удельный объем перегретого пара больше удельного объема насыщенного пара (т.к. р=const, tпер>tн), то плотность перегретого пара меньше плотности насыщенного пара. Поэтому перегретый пар явл. ненасыщенным. По своим физическим свойствам перегретый пар приближается к идеальным газам.

10.3. р,v – диаграммa водяного пара

Рассмотрим особенности процесса парообразования. Пусть в цилиндре находится 1 кг воды при температуре 0 С, на поверхность которой с помощью поршня оказывается давление р. Объем воды, находящейся под поршнем равный удельному объему при 0 С, обозначим через ( =0,001м /кг) Будем считать для упрощения, что вода явл. практически несжимаемой жидкостью и имеет наибольшую плотность при 0 С, а не при 4 С (точнее 3,98 С). При нагревании цилиндра и передаче теплоты воде температура ее будет повышаться, объем возрастать, и при достижении t=t н, соответствующей р=р 1 , вода закипит и начнется парообразование.

Все изменения состояния жидкости и пара будем отмечать в р,v координатах (рис. 10.1).

Процесс образования перегретого пара при р=const состоит из трех последовательно осуществляемых физических процессов:

1. Подогрев жидкости до температуры t н;

2. Парообразование при t н =const;

3. Перегрев пара, сопровождающийся повышением температуры.

При р=р 1 этим процессам в р,v – диаграмме соответствуют отрезки а-а , а -а , а -д. В интервале между точками а и а температура будет постоянной и равной tн1 и пар будет влажный, причем ближе к т.а степень сухости его будет меньше (х =0), а в т.а , соответствующей состоянию сухого пара, х=1. Если процесс парообразования будет идти при более высоком давлении (р 2 >р 1), то объем воды практически останется прежним. Объем v , соответствующей кипящей воде, несколько увеличится (), т.к. t н2 >t н1 , а объем , поскольку процесс парообразования при более высоком давлении и высокой температуре протекает более интенсивно. Следовательно, при возрастании давления разность объемов (отрезок ) увеличивается, а разность объемов (отрезок ) уменьшается. Аналогичная картина будет и тогда, когда процесс парообразования идет при большем давлении (р 3 >p 2 ; ; , т.к. t н3 >t н2).

Если на рис.10.1 соединить точки с одним и двумя штрихами, лежащие на изобарах

различных давлений, получим линии ; ,

каждая из которых имеет вполне определенное значение. Например, линия а-b-c выражает зависимость удельного объема воды при 0 С, от давления. Она почти параллельна оси ординат, т.к. вода – практически несжимаемая жидкость. линия дает зависимость удельного объема кипящей воды от давления. Эта линия наз. нижней пограничной кривой . В р,v – диаграмме, эта кривая отделяет область воды от области насыщенных паров. Линия показывает зависимость удельного объема сухого пара от давления и наз. верхней пограничной кривой . Она отделяет область насыщенного пара от области перегретого (ненасыщенного) пара.

Точка встречи пограничных кривых наз. критической точкой К . Эта точка соответствует некоторому предельному критическому состоянию вещества, когда отсутствует различие между жидкостью и паром. В этой точке отсутствует участок процесса парообразования. Параметры вещества при этом состоянии наз. критическими. Например, для воды: рк=22,1145 МПа; Тк=647,266 К; Vк=0,003147 м /кг.

Критическая температура явл. максимальной температурой насыщенного пара. При температуре выше критической могут находиться лишь перегретые пары и газы. Впервые понятие о критической температуре было дано в 1860 г. Д.И. Менделеевым. Он определил ее как такую температуру, выше которой газ не может быть переведен в жидкость, какое бы высокое давление к нему не было приложено.

Не всегда, однако, процесс парообразования совершается так, как это показано на рис.10.1. если вода очищена от механических примесей и растворенных в ней газов, парообразование может начаться при температуре выше Т н (иногда на 15-20 К) из-за отсутствия центров парообразования. Такая вода носит название перегретой . С другой стороны при быстром изобарном охлаждении перегретого пара конденсация его может начаться не при Т н. а при несколько более низкой температуре. Такой пар наз. переохлажденным или пересыщенным . При решении вопроса, в каком агрегатном состоянии могут быть вещества (пар или вода) при заданных р и Т р и v или Т и V нужно всегда иметь ввиду следующее. При р=const для перегретого пара и Т д >T н (см. рис. 10.1); для воды, наоборот и Т<Т н; при Т=const для перегретого пара и р е <р н; для воды и р n >р н. Зная эти соотношения и пользуясь таблицами для насыщенного пара, можно всегда определить, в какой из трех областей 1, 2 или 3 (см. рис. 10.2) находится рабочее тело с заданными параметрами, т.е. является ли жидкостью (область 1), насыщенным (область 2) или перегретым (область 3) паром.

Для сверхкритической области за вероятную границу «вода – пар» условно принимают критическую изотерму (штрихпунктирная кривая). При этом слева и справа от этой изотермы вещество находится в однофазном гомогенном состоянии, обладая, например, в т.y свойствами жидкости, а в т.z – свойствами пара.

Что такое испарение

Определение

Испарением называется процесс парообразования, который происходит со свободной поверхности жидкости.

Испарение происходит при любой температуре и происходит интенсивнее с увеличением температуры. В результате испарения происходит охлаждение жидкости, так как испарение можно объяснить тем, что молекулы, обладающие наибольшей кинетической энергией, вылетают с поверхностного слоя жидкости, преодолевая силы притяжения соседних молекул. Скорость испарения зависит от внешнего давления и движения газообразной фазы над свободной поверхностью жидкости. С повышением температуры плотность, следовательно, давление насыщенного пара над жидкостью увеличиваются. При увеличении плотности паров, поверхностное натяжение жидкости уменьшается, следовательно, скрытая теплота парообразования с повышением температуры уменьшается. При критической температуре (${\ T}_k$) плотность насыщенных паров равна плотности жидкости, различие между этими фазами вещества исчезает. Получается, что при критической температуре поверхностное натяжение и скрытая теплота парообразования равны нулю. Пар, строго говоря, газом не является. У паров близких к насыщению давление незначительно изменяется в зависимости от объема. Газовые законы, могут приближенно применяться к ненасыщенным парам.

Что такое кипение

Определение

Процесс интенсивного испарения жидкости не только с ее свободной поверхности, но и по всему объему жидкости внутрь образующихся в процессе пузырьков пара называют кипением.

Давление p внутри пузырька пара определяют в соответствии со следующим выражением:

где $p_0$- внешнее давление, $\rho gh$- давление слоев жидкости, которые расположены выше, $p_{R\ }=\frac{2\sigma}{r}$ -- дополнительное давление, которое вызвано с кривизной пузырька, $r$- радиус пузырька, $h$ - расстояние от центра пузырька до поверхности жидкости, $\rho $ -- плотность жидкости, $ \sigma $ -- поверхностное натяжение жидкости.

Кипение начинается тогда, когда давление (упругость) насыщенного пара внутри пузырька ($p_p$) больше чем давление в правой части формулы (1). Если жидкость имеет центры парообразования, то кипение жидкости начинается при более низких температурах. Если $\rho gh\ll p_0$, то можно считать, что кипение начинается при $p_p\approx p_0$. Температуру жидкости, при которой давление ее насыщенного пара равно внешнему давлению, называют температурой (точкой) кипения (${\ T}_k$). Строго говоря, кипение на различных уровнях жидкости происходит при различных температурах, нет какой то одной определенной температуры. Определенную температуру имеет насыщенный пар, который находится над поверхностью кипящей жидкости. Его температура не зависит от того как происходит кипение в глубине жидкости, и определяется только внешним давлением. Именно температура такого пара имеется в виду, когда говорят о температуре кипения.

Если кипение происходит при постоянном давлении ($p_0$), то температура кипения постоянна. Тепло, подводимое к системе, в таком случае расходуется только на парообразование.

Что такое конденсация

Определение

Процесс, обратный испарению, называют конденсацией.

При конденсации тепло выделяется. Кипение жидкости, конденсация пара -- фазовые переходы первого рода. Напомним, что фазовым переходом первого рода называют переход, который сопровождается скачкообразным изменением внутренней энергии и плотности вещества. При фазовых переходах первого рода, к которым относятся испарение и конденсация, термодинамический потенциал (Ф) системы не изменяется.

Количество теплоты, которое необходимо израсходовать при парообразовании единицы массы жидкости при температуре равной ${\ T}_k$, называют удельной теплотой парообразования (или скрытой теплотой кипения) ($r_k$). Удельную теплоту парообразования можно найти из уравнения Клайперона -- Клаузиуса:

где $v_p,v_j$ -- удельные объемы пара и жидкости при температуре кипения $T_k$. Соответственно, зависимость температуры кипения от давления в процессе испарения определяется как:

\[\frac{dT_k}{dp}=\frac{\left(v_p-v_j\right)T_k}{r_k}\ \left(3\right).\]

Так как $v_p>v_j$ и $r_k>0$, то $\frac{dT_k}{dp}>0.\ $ На рис 1. представлена кривая фазового равновесия процесса парообразования. Она заканчивается в критической точке К. Следствием обрыва кривой испарения в точке К является непрерывность жидкого и газообразного состояния вещества. Температура кипения растет при увеличении давления.

Пример 1

Задание: Определите молярную теплоту испарения жидкости при температуре T и давлении p насыщенных паров, если жидкость и ее пар подчиняются уравнению Ван-дер-Ваальса. Коэффициенты в уравнении Ван-дер-Ваальса равны a и b, $T\ll T_k$.

Теплота парообразования, исходя из первого начала термодинамики, может быть вычислена как:

где $U_j-$ внутренняя энергия жидкости, $U_p$ внутренняя энергия пара, $V_j,V_p$ объемы жидкости и пара соответственно, $p\left(V_p-V_j\right)-\ работа,\ совершаемая\ при\ испарении$ против сил внешнего давления p. Разность внутренних энергий по уравнению Ван-дер-Ваальса равна:

используем уравнение Ван-дер-Ваальса для одного моля вещества:

\[\left(p+\frac{a}{V^2}\right)\left(V-b\right)=RT\to p=\frac{RT}{\left(V-b\right)}-\frac{a}{V^2}\ \left(1.3\right).\]

Получаем:

Ответ: Молярная теплота испарения жидкости при заданных условиях равна: $r_p=V_p\left\{\frac{RT}{V_p-b}-\frac{2a}{V^2_p}\right\}-V_j\ \left\{\frac{RT}{V_j-b}-\frac{2a}{V^2_j}\right\}$.

Пример 2

Задание: Два килограмма воды взяли при температуре 00C при атмосферном давлении нагрели и превратили в пар полностью. Найдите изменение энтропии, если считать процесс обратимым.

\[\triangle S=\int{\frac{\delta Q}{T}}=\triangle S_{nagr}+\triangle S_p\ (2.1),\]

где $\triangle S_{nagr}$ изменение энтропии при нагревании воды от нуля по Цельсию до температуры кипения, то есть от $T_1=273\ K\ до\ T_2=373\ K$. $\triangle S_p-\ $изменение энтропии при парообразовании. Найдем изменение энтропии при нагревании воды:

\[\triangle S_{nagr}=\int\limits^{T_2}_{T_1}{\frac{\delta Q}{T}}=\int\limits^{T_2}_{T_1}{\frac{cmdT}{T}}=cm\int\limits^{T_2}_{T_1}{\frac{dT}{T}}=cmln\left(\frac{T_2}{T_1}\right)\left(2.2\right),\]

где $c$ удельная теплоемкость воды равна $c=4,2\ {\cdot 10}^3\frac{Дж}{кгК}$

Процесс парообразования при температуре кипения идет без изменения температуры, поэтому выражение для изменения энтропии в этом процессе будет иметь вид:

\[\triangle S_p=\frac{1}{T_2}\int{\delta Q}=\frac{1}{T_2}\triangle Q=\frac{r_pm}{T_2}\left(2.3\right),\]

где $r_p$- удельная теплота парообразования из справочных материалов равна для воды $r_p=22,6\cdot {10}^5\frac{Дж}{кг}$.

Окончательно выражение для изменения энтропии имеем в виде:

\[\triangle S=cmln\left(\frac{T_2}{T_1}\right)+\frac{r_pm}{T_2}\ \left(2.4\right).\]

Все данные переведены в СИ, проведем расчет:

\[\triangle S=4,2\ {\cdot 10}^3\cdot 2{ln \left(\frac{373}{273}\right)\ }+\frac{22,6\cdot {10}^5\cdot 2}{373}=14,6{\cdot 10}^3\frac{Дж}{К}.\]

Ответ: Изменение энтропии в заданном процессе равно $1,46{\cdot 10}^4\frac{Дж}{К}$.

Все газы явл. парами какого-либо вещества, поэтому принципиальной разницы между понятиями газ и пар нет. Водяной пар явл. реальным газом и широко используется в различных отраслях промышленности. Это объясняется повсеместным распространением воды, ее дешевизной и безвредностью для здоровья человека. Водяной пар получается в процессе испарения воды при подводе к ней теплоты.

Парообразованием наз. процесс перехода жидкости в пар.

Испарением наз. парообразование, происходящее только с поверхности жидкости и при любой температуре. Интенсивность испарения зависит от природы жидкости и температуры.

Кипением наз. парообразование во всей массе жидкости.

Процесс превращения пара в жидкость, осуществляющийся при отнятии от него теплоты и являющийся процессом, обратным парообразованию, наз. конденсацией . Этот процесс, также как и парообразование, происходит при постоянной температуре.

Возгонкой или сублимацией наз. процесс перехода вещества из твердого состояния непосредственно в пар.

Процесс, обратный процессу сублимации, т.е. процесс перехода пара непосредственно в твердое состояние, наз. десублимацией .

Насыщенный пар. При испарении жидкости в ограниченный объем одновременно происходит и обратный процесс, т.е. явление сжижения. По мере испарения и заполнения паром пространства над жидкостью, уменьшается интенсивность испарения и увеличивается интенсивность обратного ему процесса. В некоторый момент, когда скорость конденсации станет равной скорости испарения, в системе наступает динамическое равновесие. При этом состоянии число молекул, вылетающих из жидкости, будет равно числу молекул, возвращающихся в нее обратно. Следовательно, в паровом пространстве при этом равновесном состоянии будет находиться максимальное число молекул. Пар при этом состоянии имеет максимальную плотность и наз. насыщенным . Под насыщенным понимают пар, находящийся в равновесном состоянии с жидкостью, из которой он образуется. Насыщенный пар имеет температуру, являющуюся функцией его давления, равного давлению среды, в которой происходит процесс кипения. При увеличении объема насыщенного пара при постоянной температуре происходит переход некоторого количества жидкости в пар, при уменьшении же объема при постоянной температуре – переход пара в жидкость, но как в первом, так и во втором случаях давление пара остается постоянным.

Сухой насыщенный пар получается при испарении всей жидкости. Объем и температура сухого пара являются функциями давления. Вследствие этого состояние сухого пара определяется одним параметром, например, давлением или температурой.

Влажный насыщенный пар , получающийся при неполном испарении жидкости, явл. смесью пара с мельчайшими капельками жидкости, распространенными равномерно по всей его массе и находящимися в нем во взвешенном состоянии.



Массовая доля сухого пара во влажном паре наз. степенью сухости или массовым паросодержанием и обозначается через x. Массовая доля жидкости во влажном паре наз. степенью влажности и обозначается y. Очевидно, что y=1-x. Степень сухости и степень влажности выражают или в долях единицы или в процентах.

Для сухого пара х=1, а для воды х=0. В процессе парообразования степень сухости пара постепенно увеличивается от нуля до единицы.

При сообщении сухому пару теплоты при постоянном давлении, температура его будет увеличиваться. Пар, получаемый в этом процессе, наз. перегретым .

Поскольку удельный объем перегретого пара больше удельного объема насыщенного пара (т.к. р=const, tпер>tн), то плотность перегретого пара меньше плотности насыщенного пара. Поэтому перегретый пар явл. ненасыщенным. По своим физическим свойствам перегретый пар приближается к идеальным газам.

10.3. р,v – диаграммa водяного пара

Рассмотрим особенности процесса парообразования. Пусть в цилиндре находится 1 кг воды при температуре 0 С, на поверхность которой с помощью поршня оказывается давление р. Объем воды, находящейся под поршнем равный удельному объему при 0 С, обозначим через ( =0,001м /кг) Будем считать для упрощения, что вода явл. практически несжимаемой жидкостью и имеет наибольшую плотность при 0 С, а не при 4 С (точнее 3,98 С). При нагревании цилиндра и передаче теплоты воде температура ее будет повышаться, объем возрастать, и при достижении t=t н, соответствующей р=р 1 , вода закипит и начнется парообразование.

Все изменения состояния жидкости и пара будем отмечать в р,v координатах (рис. 10.1).

Процесс образования перегретого пара при р=const состоит из трех последовательно осуществляемых физических процессов:

1. Подогрев жидкости до температуры t н;

2. Парообразование при t н =const;

3. Перегрев пара, сопровождающийся повышением температуры.

При р=р 1 этим процессам в р,v – диаграмме соответствуют отрезки а-а , а -а , а -д. В интервале между точками а и а температура будет постоянной и равной tн1 и пар будет влажный, причем ближе к т.а степень сухости его будет меньше (х =0), а в т.а , соответствующей состоянию сухого пара, х=1. Если процесс парообразования будет идти при более высоком давлении (р 2 >р 1), то объем воды практически останется прежним. Объем v , соответствующей кипящей воде, несколько увеличится (), т.к. t н2 >t н1 , а объем , поскольку процесс парообразования при более высоком давлении и высокой температуре протекает более интенсивно. Следовательно, при возрастании давления разность объемов (отрезок ) увеличивается, а разность объемов (отрезок ) уменьшается. Аналогичная картина будет и тогда, когда процесс парообразования идет при большем давлении (р 3 >p 2 ; ; , т.к. t н3 >t н2).

Если на рис.10.1 соединить точки с одним и двумя штрихами, лежащие на изобарах

различных давлений, получим линии ; ,

каждая из которых имеет вполне определенное значение. Например, линия а-b-c выражает зависимость удельного объема воды при 0 С, от давления. Она почти параллельна оси ординат, т.к. вода – практически несжимаемая жидкость. линия дает зависимость удельного объема кипящей воды от давления. Эта линия наз. нижней пограничной кривой . В р,v – диаграмме, эта кривая отделяет область воды от области насыщенных паров. Линия показывает зависимость удельного объема сухого пара от давления и наз. верхней пограничной кривой . Она отделяет область насыщенного пара от области перегретого (ненасыщенного) пара.

Точка встречи пограничных кривых наз. критической точкой К . Эта точка соответствует некоторому предельному критическому состоянию вещества, когда отсутствует различие между жидкостью и паром. В этой точке отсутствует участок процесса парообразования. Параметры вещества при этом состоянии наз. критическими. Например, для воды: рк=22,1145 МПа; Тк=647,266 К; Vк=0,003147 м /кг.

Критическая температура явл. максимальной температурой насыщенного пара. При температуре выше критической могут находиться лишь перегретые пары и газы. Впервые понятие о критической температуре было дано в 1860 г. Д.И. Менделеевым. Он определил ее как такую температуру, выше которой газ не может быть переведен в жидкость, какое бы высокое давление к нему не было приложено.

Не всегда, однако, процесс парообразования совершается так, как это показано на рис.10.1. если вода очищена от механических примесей и растворенных в ней газов, парообразование может начаться при температуре выше Т н (иногда на 15-20 К) из-за отсутствия центров парообразования. Такая вода носит название перегретой . С другой стороны при быстром изобарном охлаждении перегретого пара конденсация его может начаться не при Т н. а при несколько более низкой температуре. Такой пар наз. переохлажденным или пересыщенным . При решении вопроса, в каком агрегатном состоянии могут быть вещества (пар или вода) при заданных р и Т р и v или Т и V нужно всегда иметь ввиду следующее. При р=const для перегретого пара и Т д >T н (см. рис. 10.1); для воды, наоборот и Т<Т н; при Т=const для перегретого пара и р е <р н; для воды и р n >р н. Зная эти соотношения и пользуясь таблицами для насыщенного пара, можно всегда определить, в какой из трех областей 1, 2 или 3 (см. рис. 10.2) находится рабочее тело с заданными параметрами, т.е. является ли жидкостью (область 1), насыщенным (область 2) или перегретым (область 3) паром.

Для сверхкритической области за вероятную границу «вода – пар» условно принимают критическую изотерму (штрихпунктирная кривая). При этом слева и справа от этой изотермы вещество находится в однофазном гомогенном состоянии, обладая, например, в т.y свойствами жидкости, а в т.z – свойствами пара.

При парообразовании вещество переходит из жидкого состояния в газообразное (пар). Существуют два вида парообразования:

Испарение

Кипение

Испарение – это парообразование, происходящее со свободной поверхности жидкости.

Молекулы любой жидкости находятся в непрерывном и беспорядочном движении, причем одни из них движутся быстрее, другие медленнее. Вылететь наружу им мешают силы притяжения друг к другу. Если, однако, у поверхности жидкости окажется молекула с достаточно большой кинетической энергией, то она сможет преодолеть силы межмолекулярного притяжения и вылетит из жидкости. То же самое повторится с другой быстрой молекулой, со второй, третьей и т.д. Вылетевшие с поверхности жидкости молекулы образуют над ней пар. Идет процесс испарения.

Скорость испарения зависит от рода жидкости . Быстрее испаряется та жидкость, молекулы которой притягиваются друг к другу с меньшей силой.

Испарение происходит тем быстрее, чем выше температура жидкости . Чем выше температура жидкости, тем большее число молекул способны преодолеть силы притяжения окружающих молекул и вылететь с поверхности жидкости.

Скорость испарения жидкости зависит от площади её поверхности . Чем больше площадь поверхности жидкости, тем большее число молекул участвует в процессе парообразования.

Одновременно с испарением на поверхности жидкости происходит и обратный процесс – конденсация . Беспорядочно двигаясь над поверхностью жидкости, часть молекул, покинувших её, снова в нее возвращается вследствие притяжения молекулами жидкости поверхностного слоя.

Т.к. при испарении из жидкости вылетают наиболее быстрые молекулы, средняя кинетическая энергия оставшихся в жидкости молекул становится все меньше и меньше. В результате этого температура испаряющейся жидкости понижается: жидкость охлаждается.

Явление превращения пара в жидкость называют конденсацией . Конденсация пара сопровождается выделением энергии.

Летним вечером, когда воздух становится холоднее, выпадает роса. Это водяной пар, находившийся в воздухе, при охлаждении конденсируется, и маленькие капельки воды оседают на траве и листьях.

При испарении жидкость охлаждается и, став более холодной, чем окружающая среда, начинает поглощать её энергию. При конденсации же, наоборот, происходит выделение некоторого количества теплоты в окружающую среду, и её температура несколько повышается.

Кипение – интенсивное парообразование, при котором внутри жидкости растут и поднимаются вверх пузырьки пара. Оно начинается после того, как давление внутри пузырьков сравнивается с давлением в окружающей жидкости.

По мере нагревания воды пузырьки воздуха, растворенные в воде, становятся крупнее и многочисленнее. С ростом размеров пузырьков, возрастает и архимедова сила, выталкивающая их из воды, и они всплывают. При определенной температуре с приближением к поверхности объем пузырьков резко возрастает. На поверхности они лопаются, и находившийся в них водяной пар выходит в атмосферу - вода кипит.


Во время кипения температура жидкости и пара над ней не меняется. Она сохраняется неизменной до тех пор, пока вся жидкость не выкипит.

Температура, при которой жидкость кипит, называют температурой кипения .

Температура кипения зависит от давления, оказываемого на свободную поверхность жидкости. При увеличении этого давления рост и подъем пузырьков внутри жидкости начинается при большей температуре, при уменьшении давления – при меньшей температуре.

Физическая величина, показывающая, какое количество теплоты необходимо для превращения в пар 1 кг жидкости при постоянной температуре, называется удельной теплотой парообразования. (r – измеряется Дж/кг).

Чтобы найти количество теплоты, необходимое для превращения в пар жидкости произвольной массы m, взятой при температуре кипения, надо удельную теплоту парообразования этой жидкости умножить на её массу:

Количество теплоты, которое выделяет пар массой m, конденсируясь при температуре кипения, определяется той же формулой, но со знаком минус.

В окружающем нас воздухе практически всегда находится некоторое количество водяных паров. Влажность воздуха зависит от количества водяного пара, содержащегося в нем. Чем больше водяных паров находится в объеме воздуха, тем ближе пар к состоянию насыщения, но чем выше температура воздуха, тем большее количество водяных паров необходимо для его насыщения.

Относительная влажность - это отношение плотности водяного пара, содержащегося в воздухе (ρ), к плотности насыщенного пара при данной температуре, выраженное в процентах.

φ=ρ *100%

ρ нас.

Сухость или влажность воздуха зависит от того, насколько близок его водяной пар к насыщению. Признаком того, что пар насытился является появление первых капель сконденсировавшейся жидкости - росы.

Примеры: выпадение росы под утро, запотевание холодного стекла, если на него подышать, образование капли воды на холодной водопроводной трубе.

Влажность воздуха определяется психрометром.

В психрометре есть два термометра. Один - обычный, его называют сухим. Он измеряет температуру окружающего воздуха. Колба другого термометра обмотана тканевым фитилем и опущена в емкость с водой. Второй термометр показывает не температуру воздуха, а температуру влажного фитиля, отсюда и название увлажненный термометр. Чем меньше влажность воздуха, тем интенсивнее испаряется влага из фитиля, тем большее количество теплоты в единицу времени отводится от увлажненного термометра, тем меньше его показания, следовательно, тем больше разность показаний сухого и увлажненного термометров.

Подробности Категория: Молекулярно-кинетическая теория Опубликовано 09.11.2014 21:08 Просмотров: 13006

В жидком состоянии вещество может существовать в определённом интервале температур. При температуре, меньшей нижнего значения этого интервала, жидкость превращается в твёрдое вещество. А если значение температуры превысит верхнюю границу интервала, жидкость переходит в газообразное состояние.

Всё это мы можем наблюдать на примере воды. В жидком состоянии мы видим её в реках, озёрах, морях, океанах, водопроводном кране. Твёрдое состояние воды - лёд. В него она превращается, когда при нормальном атмосферном давлении её температура снижается до 0 о С. А при повышении температуры до 100 о С вода закипает и превращается в пар, который является её газообразным состоянием.

Процесс превращения вещества в пар называют парообразованием. Обратный процесс перехода из пара в жидкость - конденсация .

Парообразование происходит в двух случаях: при испарении и при кипении.

Испарение

Испарением называют фазовый процесс перехода вещества из жидкого состояния в газообразное или парообразное, происходящий на поверхности жидкости .

Как и при плавлении, при испарении веществом поглощается теплота. Она затрачивается на преодоление сил сцепления частиц (молекул или атомов) жидкости. Кинетическая энергия молекул, обладающих самой высокой скоростью, превышает их потенциальную энергию взаимодействия с другими молекулами жидкости. Благодаря этому они преодолевают притяжение соседних частиц и вылетают с поверхности жидкости. Средняя энергия оставшихся частиц становится меньше, и жидкость постепенно остывает, если её не подогревать извне.

Так как частицы находятся в движении при любой температуре, то и испарение также происходит при любой температуре . Мы знаем, что лужи после дождя высыхают даже в холодную погоду.

Но скорость испарения зависит от многих факторов. Один из важнейших - температура вещества . Чем она выше, тем больше скорость движения частиц и их энергия, и тем большее их количество покидает жидкость в единицу времени.

Наполним одинаковым количеством воды 2 стакана. Один поставим на солнцепёк, а другой оставим в тени. Через некоторое время увидим, что воды в первом стакане стало меньше, чем во втором. Её нагрели солнечные лучи, и она испарилась быстрее. Лужи после дождя летом также высыхают гораздо быстрее, чем весной или осенью. В сильную жару происходит быстрое испарение воды с поверхностей водоёмов. Высыхают пруды, озёра, пересыхают русла неглубоких рек. Чем выше температура окружающей среды, тем выше скорость испарения.

При одинаковом объёме жидкость, находящаяся в широкой тарелке, испарится гораздо быстрее жидкости, налитой в стакан. Это означает, что скорость испарения зависит от площади поверхности испарения . Чем больше эта площадь, тем большее количество молекул вылетает из жидкости в единицу времени.

При одинаковых внешних условиях скорость испарения зависит от рода вещества . Заполним стеклянные колбы одинаковым объёмом воды и спирта. Через некоторое время увидим, что спирта осталось меньше, чем воды. Он испаряется с большей скоростью. Так происходит, потому что молекулы спирта слабее взаимодействуют друг с другом, чем молекулы воды.

Влияет на скорость испарения и наличие ветра . Мы знаем, что вещи после стирки гораздо быстрее высыхают, когда их обдувает ветер. Струя горячего воздуха в фене способна быстро высушить наши волосы.

Ветер уносит молекулы, вылетевшие из жидкости, и обратно они уже не возвращаются. Их место занимают новые молекулы, покидающие жидкость. Поэтому в самой жидкости их становится меньше. Следовательно, она испаряется быстрее.

Сублимация

Испарение происходит и в твёрдых телах. Мы видим, как постепенно высыхает на морозе замёрзшее, покрытое льдом бельё. Лёд превращается в пар. Мы ощущаем резкий запах, образующийся при испарении твёрдого вещества нафталина.

Некоторые вещества вообще не имеют жидкой фазы. К примеру, элементарный иод I 2 - простое вещество, представляющее собой кристаллы чёрно-серого цвета с фиолетовым металлическим блеском, при нормальных условиях сразу же превращается в газообразный иод - фиолетовые пары с резким запахом. Тот жидкий йод, который мы покупаем в аптеках, - это не жидкое его состояние, а раствор йода в спирте.

Процесс перехода твёрдых тел в газообразное состояние, минуя жидкую стадию, называют сублимацией, или возгонкой .

Кипение

Кипение - это тоже процесс перехода жидкости в пар. Но парообразование при кипении происходит не только на поверхности жидкости, но и по всему её объёму. Причём процесс этот проходит гораздо интенсивнее, чем при испарении.

Поставим на огонь чайник с водой. Так как в воде всегда есть растворённый в ней воздух, то при нагревании на дне чайника и на его стенках появляются пузырьки. Эти пузырьки содержат воздух и насыщенный водяной пар. Сначала они появляются на стенках чайника. Количество пара в них увеличивается, увеличиваются в размерах и они сами. Затем под воздействием выталкивающей силы Архимеда они будут отрываться от стенок, подниматься вверх и лопаться на поверхности воды. Когда температура воды достигнет 100 о С, пузырьки будут образовываться уже по всему объёму воды.

Испарение происходит при любой температуре, а кипение - только при определённой температуре, которая называется температурой кипения .

Каждое вещество имеет свою температуру кипения. Она зависит от величины давления.

При нормальном атмосферном давлении вода закипает при температуре 100 о С, спирт - при 78 о С, железо - при 2750 о С. А температура кипения кислорода - минус 183 о С.

При уменьшении давления температура кипения снижается. В горах, где атмосферное давление ниже, вода закипает при температуре менее 100 о С. И чем выше над уровнем моря, тем меньшей будет температура кипения. А в кастрюле-скороварке, где создаётся повышенное давление, вода закипает при температуре выше 100 о С.

Насыщенный и ненасыщенный пар

Если вещество может одновременно существовать в жидкой (или твёрдой) фазе и газообразной, то его газообразное состояние называют паром . Пар образуют молекулы, вылетевшие при испарении из жидкости или твёрдого вещества.

Нальём жидкость в сосуд и плотно закроем его крышкой. Через некоторое время количество жидкости уменьшится из-за её испарения. Молекулы, покидающие жидкость, будут концентрироваться над её поверхностью в виде пара. Но когда плотность пара станет довольно высокой, некоторые из них начнут снова возвращаться в жидкость. И таких молекул будет всё больше и больше. Наконец, настанет такой момент, когда число молекул, вылетающих из жидкости, и число молекул, возвращающихся в неё, сравняется. В этом случае говорят, что жидкость находится в динамическом равновесии со своим паром . А такой пар называется насыщенным .

Если при парообразовании из жидкости вылетает больше молекул, чем возвращается, то такой пар будет ненасыщенным . Ненасыщенный пар образуется, когда испаряющаяся жидкость находится в открытом сосуде. Покидающие её молекулы рассеиваются в пространстве. Возвращаются в жидкость далеко не все из них.

Конденсация пара

Обратный переход вещества из газообразного состояния в жидкое называют конденсацией. При конденсации часть молекул пара возвращается в жидкость.

Пар начинает превращаться в жидкость (конденсироваться) при определённом сочетании температуры и давления. Такое сочетание называется критической точкой . Максимальная температура, ниже которой начинается конденсация, называется критической температурой. При температуре выше критической газ никогда не превратится в жидкость.

В критической точке граница раздела фазовых состояний жидкость-пар размывается. Исчезает поверхностное натяжение жидкости, выравниваются плотности жидкости и её насыщенного пара.

При динамическом равновесии, когда число молекул, покидающих жидкость и возвращающихся в неё равно, процессы испарения и конденсации уравновешены.

При испарении воды её молекулы образуют водяной пар , который смешивается с воздухом или другим газом. Температура, при которой такой пар в воздухе становится насыщенным, начинает конденсироваться при охлаждении и превращается в капельки воды, называется точкой росы .

Когда в воздухе находится большое количество водяного пара, говорят, что его влажность повышена.

В природе испарение и конденсацию мы наблюдаем очень часто. Утренний туман, облака, дождь - всё это результат этих явлений. С земной поверхности при нагревании испаряется влага. Молекулы образовавшегося пара поднимаются вверх. Встречая на своём пути прохладные листики или травинки, пар конденсируется на них в виде капелек росы. Чуть выше, в приземных слоях, он становится туманом. А высоко в атмосфере при низкой температуре остывший пар превращается в облака, состоящие из капелек воды или кристалликов льда. Впоследствии из этих облаков на землю прольётся дождь или выпадет град.

Но капельки воды при конденсации образуются лишь в том случае, когда в воздухе находятся мельчайшие твёрдые или жидкие частицы, которые называют ядрами конденсации . Ими могут быть продукты горения, распыления, частицы пыли, морской соли над океаном, частицы, образовавшиеся в результате химических реакций в атмосфере и др.

Десублимация

Иногда вещество может перейти из газообразного состояния сразу в твёрдое, минуя жидкую стадию. Такой процесс называется десублимацией .

Ледяные узоры, которые появляются на стёклах в мороз, и есть пример десублимации. При заморозках почва покрывается инеем - тонкими кристалликами льда, в которые превратились водяные пары из воздуха.

Похожие статьи